The AceFEM package is a general finite element environment designed to solve multi-physics and multi-field problems. The AceFEM package explores advantages of symbolic capabilities of Mathematica while maintaining numerical efficiency of commercial finite element environment. The package combines use of Mathematica’s facilities with external handling of intensive computations by compiled modules.
The main part of the package includes procedures that are not numerically intensive, such as processing of the user input data, mesh generation, control of the solution procedures, graphic post-processing of the results, etc.. Those procedures are written in Mathematica language and executed inside Mathematica. The numerical module includes numerically intensive operations, such as evaluation and assembly of the finite element quantities (tangent matrix, residual, sensitivity vectors, etc.), solution of the linear system of equations, contact search procedures, etc.. The numerical module exists as Mathematica package as well as external program written in C language and is connected with Mathematica via the MathLink protocol. This unique capability gives the user the opportunity to solve industrial large-scale problems with several 100000 unknowns and to use advanced capabilities of Mathematica such as high precision arithmetic, interval arithmetic, or even symbolic evaluation of FE quantities to analyze various properties of the numerical procedures on relatively small examples. The AceFEM package comes with a library of finite elements (solid, thermal, contact,... 2D, 3D,...) including full symbolic input for most of the elements. Additional elements can be accessed through the AceShare finite element file sharing system. The element oriented approach enables easy creation of costumized finite element based applications in Mathematica. In combination with the automatic code generation package AceGen the AceFEM package represents an ideal tool for a rapid development of new numerical models.
NOTE: The complementary product AceGen is required for the generation
of new finite elements. Without AceGen only the existing elements from the
built-in or shared libraries can be used!
·
ZUPAN, Nina, KORELC, Jože. Sensitivity analysis
based multi-scale methods of coupled path-dependent problems, Computational
Mechanics, 2020, 65:229–248, DOI 10.1007/s00466-019-01762-8,
https://link.springer.com/article/10.1007/s00466-019-01762-8
·
Research Challenges in Mechanics: Applications
of Automated Computational Modeling ,
https://www.rcm2017.uni-hannover.de/
·
ZUPAN, Nina, KORELC, Jože. Unified approach to
sensitivity analysis based automation of multiscale
modelling. V: SORIĆ, Jurica (ed.), WRIGGERS, Peter (ed.), ALLIX, Olivier
(ed.). Multiscale modeling of heterogeneous structures, (Lecture notes in
applied and computational mechanics, ISSN 1613-7736, Vol. 86). Berlin: Springer
International Publishing AG. cop. 2018, 113-127
·
KORELC, Jože, WRIGGERS, Peter. Automation of
finite element methods. Switzerland: Springer, 2016. XXVI.
http://link.springer.com/book/10.1007%2F978-3-319-39005-5, doi: 10.1007/978-3-319-39005-5. http://www.springer.com/-/1/AVXo2wyFKEAfyFF0Zyqj
·
AceGen and AceFEM manual and installation,
http://symech.fgg.uni-lj.si/
·
STANIĆ, Andjelka,
BRANK, Boštjan, KORELC, Jože. On path-following methods for structural failure
problems. Computational mechanics, ISSN 0178-7675, 2016, letn.
57, št. v tisku, str. 1-26,
ilustr., doi:
10.1007/s00466-016-1294-y. [COBISS.SI-ID 7456097]
·
HUDOBIVNIK, Blaž, KORELC, Jože. Closed-form
representation of matrix functions in the formulation of nonlinear material
models. Finite Elements in Analysis and Design, 2016, 111:19-32
·
ŠOLINC, Urša, KORELC,
Jože. A simple way to improved formulation of FE2 analysis. Computational mechanics, 2015, 56:905-915, doi:
10.1007/s00466-015-1208-4. [COBISS.SI-ID 7244129]
·
MELINK, Teja, KORELC, Jože. Stability of Karhunen- Ločve expansion for the
simulation of Gaussian stochastic fields using Galerkin
scheme. Probabilistic Engineering Mechanics, 2014, 37:7-15, doi:
10.1016/j.probengmech.2014.03.006. [COBISS.SI-ID 6653793]
·
KORELC, Jože, STUPKIEWICZ, Stanisław.
Closed-form matrix exponential and its application in finite-strain plasticity.
International journal for numerical methods in engineering, ISSN 0029-5981,
2014, 98(13):960-987, ilustr., doi:
10.1002/nme.4653. [COBISS.SI-ID 6526817]
·
KORELC, Jože. Semi-analytical solution of path-independed nonlinear finite element models. Finite elem.
anal. des., 2011, 47:281-287
·
LENGIEWICZ, Jakub, KORELC, Jože, STUPKIEWICZ,
Stanislaw., Automation of finite element formulations for large deformation
contact problems. Int. j. numer. methods eng., 2011, 85: 1252–1279
·
LAMUT, Martin, KORELC, Jože, RODIČ, Tomaž. Multiscale modelling of heterogeneous materials.
Mater. tehnol., 2011, 45(5):421-426
·
RODIČ, Tomaž,
ŠUŠTAR, Tomaž, ŠUŠTARIČ, Primož, KORELC, Jože.
Efficient numerical implementation of pressure, time and temperature
superposition for elasto-visco-plastic
material model by using a symbolic approach. Int. j. numer.
methods eng., 2010, 84:470-484
·
KORELC, Jože, ŠOLINC, Urša,
WRIGGERS, Peter. An improved EAS brick element for finite deformation. Comput. mech., 2010, 46:641-659
·
STUPKIEWICZ, Stanislaw, LENGIEWICZ, Jakub, KORELC,
Jože. Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Comput.
methods appl. mech. eng.,
2010, 199:2165-2176.
·
KORELC, Jože. Direct computation of critical
points based on Crout's elimination and diagonal
subset test function. Comput. struct..
2010, 88:189-197.
·
KORELC, Jože. Automation of primal and
sensitivity analysis of transient coupled problems. Comput.
mech., 2009, 44:631-649.
·
KRISTANIČ, Niko, KORELC, Jože. Optimization
method for the determination of the most unfavorable imperfection of
structures. Comput. mech., 2008, 42:859-872.
·
KORELC, Jože. Automation of the finite element
method. V: WRIGGERS, Peter. Nonlinear finite element methods. Berlin: Springer,
2008, 483-508.
·
RODIČ, Tomaž,
KORELC, Jože, PRISTOVŠEK, Anton. A micro-macro analysis of the tool damage in
precision forming. Mater. tehnol., 2006, 40:243-246.
·
STADLER, Michael, HOLZAPFEL, Gerhard A., KORELC,
Jože. Cn continuous modelling of smooth contact surfaces using NURBS and
application to 2D problems. Int. j. numer. methods eng., 2003, 57:2177-2203.
·
BRANK, Boštjan, KORELC, Jože,
IBRAHIMBEGOVIĆ, Adnan. Dynamic and time-stepping schemes for elastic
shells undergoing finite rotations. Comput. struct.,
2003, 81:1193-1210.
·
STUPKIEWICZ, Stanislaw, KORELC, Jože, DUTKO,
Martin, RODIČ, Tomaž. Shape sensitivity analysis
of large deformation frictional contact problems. Comput.
methods appl. mech. Eng, 2002, 191:3555-3581.
·
KUNC, Robert, PREBIL, Ivan, RODIČ, Tomaž, KORELC, Jože. Low cycle elastoplastic properties of normalised and tempered 42CrMo4 steel, Materials Science
and Technology, 2002, 18:1363-1368.
·
KRSTULOVIĆ-OPARA, Lovre,
WRIGGERS, Peter, KORELC, Jože. A C1-continuous formulation for 3D finite
deformation frictional contact. Comput. mech., 2002,
29:27-42.
·
KORELC, Jože, Multi-language and
Multi-environment Generation of Nonlinear Finite Element Codes,
Engineering with Computers, 2002, 18(4):312-327
·
BRANK, Boštjan, KORELC, Jože,
IBRAHIMBEGOVIĆ, Adnan. Nonlinear shell problem formulation accounting for
through-the-tickness stretching and its finite
element implementation. Comput. struct., 2002,
80:699-717.
·
WRIGGERS, Peter, KRSTULOVIĆ-OPARA, Lovre, KORELC, Jože. Smooth C1-interpolations for
two-dimensional frictional contact problems. Int. j. numer.
methods eng., 2001, 51:1469-1495.
·
KORELC, Jože, WRIGGERS, Peter. Improved enhanced
strain four-node element with Taylor expansion of the shape functions. Int. j. numer. methods eng., 1997,
40:407-421.
·
KORELC, Jože, WRIGGERS, Peter. Consistent
gradient formulation for a stable enhanced strain method for large
deformations. Eng. comput., 1996, 13:103-123.
·
KORELC, Jože. Automatic generation of
finite-element code by simultaneous optimization of expressions. Theor. comput. sci.. , 1997, 187:231-248.
·
WRIGGERS, Peter, KORELC, Jože. On enhanced
strain methods for small and finite deformations of solids. Comput.
mech., 1996, 18:413-428.
· KORELC, Jože, WRIGGERS, P. An efficient 3D enhanced strain element with Taylor expansion of the shape functions. Comput. mech., 1994, 19:20-40.