·       KORELC, J. Automation of primal and sensitivity analysis of transient coupled problems.  Computational mechanics, 44(5):631-649 (2009).

·       HUDOBIVNIK, Blaž, KORELC, Jože. Closed-form representation of matrix functions in the formulation of nonlinear material models. Finite Elements in Analysis and Design, 2016, 111:19-32

·       ŠOLINC, Urša, KORELC, Jože. A simple way to improved formulation of FE2 analysis. Computational mechanics,  2015,  56:905-915, doi: 10.1007/s00466-015-1208-4.

·       MELINK, Teja, KORELC, Jože. Stability of Karhunen- Ločve expansion for the simulation of Gaussian stochastic fields using Galerkin scheme. Probabilistic Engineering Mechanics, 2014, 37:7-15, doi: 10.1016/j.probengmech.2014.03.006.

·       ZUPAN, Nina, KORELC, Jože. Sensitivity analysis based multi-scale methods of coupled path-dependent problems, Computational Mechanics, 2019, DOI 10.1007/s00466-019-01762-8

·       KORELC, Jože, STUPKIEWICZ, Stanislaw. Closed-form matrix exponential and its application in finite-strain plasticity. International journal for numerical methods in engineering, ISSN 0029-5981, 2014, 98(13):960-987, ilustr., doi: 10.1002/nme.4653.

·       LENGIEWICZ, Jakub, KORELC, Joze, STUPKIEWICZ, Stanislaw., Automation of finite element formulations for large deformation contact problems. Int. j. numer. methods eng., 2011, 85: 1252-1279.

·       KORELC, J. Direct computation of critical points based on Crout`s elimination and diagonal subset test function, Computers and Structures, 88:189-197 (2010).

·       Korelc J., (2002), Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes,  Engineering with Computers, 2002, vol. 18, n. 4,str. 312-327

·       Korelc, J. (1997a), Automatic generation of finite-element code by simultaneous optimization of expressions, Theoretical Computer Science, 187, 231-248.

·       Korelc J. (1996), Symbolic Approach in Computational Mechanics and its Application to the Enhanced Strain Method, Doctoral Dissertation, Institut of Mechanics, TH Darmstadt, Germany.

·       Korelc J. (1997b), A symbolic system for cooperative problem solving in computational mechanics, Computational Plasticity Fundamentals and Applications, (Owen D.R.J., Oñate E. and Hinton E., editors), CIMNE, Barcelona, 447-451.

·       Korelc J., and Wriggers P. (1997c), Symbolic approach in computational mechanics, Computational Plasticity Fundamentals and Applications, (Owen D.R.J., Oñate E. and Hinton E., editors), CIMNE, Barcelona, 286-304.

·       Korelc J., (2001), Hybrid system for multi-language and multi-environment generation of numerical codes, Proceedings of the ISSAC'2001 Symposium on Symbolic and Algebraic Computation, New York, ACM:Press, 209-216

·       WRIGGERS, Peter, KRSTULOVIC-OPARA, Lovre, KORELC, Jože.(2001),  Smooth C1-interpolations for two-dimensional frictional contact problems. Int. j. numer. methods eng., 2001, vol. 51, issue 12, str. 1469-1495

·       KRSTULOVIC-OPARA, Lovre, WRIGGERS, Peter, KORELC, Jože. (2002), A C1-continuous formulation for 3D finite deformation frictional contact. Comput. mech., vol. 29, issue 1, 27-42

·       STUPKIEWICZ, Stanislaw, KORELC, Jože, DUTKO, Martin, RODIC, Tomaž. (2002), Shape sensitivity analysis of large deformation frictional contact problems. Comput. methods appl. mech. eng., 2002, vol. 191, issue 33, 3555-3581

·       BRANK, Boštjan, KORELC, Jože, IBRAHIMBEGOVIC, Adnan. (2002), Nonlinear shell problem formulation accounting for through-the-tickness stretching and its finite element implementation. Comput. struct.. vol. 80, n. 9/10,  699-717

·       BRANK, Boštjan, KORELC, Jože, IBRAHIMBEGOVIC, Adnan. (2003),Dynamic and time-stepping schemes for elastic shells undergoing finite rotations. Comput. struct., vol. 81, issue 12, 1193-1210

·       STADLER, Michael, HOLZAPFEL, Gerhard A., KORELC, Jože. (2003) Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int. j. numer. methods eng.,  2177-2203

·       KUNC, Robert, PREBIL, Ivan, RODIC, Tomaž, KORELC, Jože.  (2002),Low cycle elastoplastic properties of normalised and tempered 42CrMo4 steel. Mater. sci. technol.,  Vol. 18, 1363-1368.

·       Bialas M, Majerus P, Herzog R, Mroz Z, Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone elements, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 412 (1-2): 241-251 Sp. Iss. SI, DEC 5 2005

·       Maciejewski G, Kret S, Ruterana P, Piezoelectric field around threading dislocation in GaN determined on the basis of high-resolution transmission electron microscopy image , JOURNAL OF MICROSCOPY-OXFORD 223: 212-215 Part 3 SEP 2006

·       Wisniewski K, Turska E, Enhanced Allman quadrilateral for finite drilling rotations, COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 195 (44-47): 6086-6109 2006

·       Maciejewski G, Stupkiewicz S, Petryk H, Elastic micro-strain energy at the austenite-twinned martensite interface, ARCHIVES OF MECHANICS 57 (4): 277-297 2005

·       Stupkiewicz S, The effect of stacking fault energy on the formation of stress-induced internally faulted martensite plates, EUROPEAN JOURNAL OF MECHANICS A-SOLIDS 23 (1): 107-126 JAN-FEB 2004